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3. Timeline: 

Analyses will be completed within 1 year of receipt of final Visit 6 outcome data.  

 



 

4. Rationale:  

 

Diffusion tensor imaging (DTI) quantifies the microstructural integrity of white matter.1 

Commonly used DTI measures include fractional anistotrophy (FA) and mean diffusivity (MD). 

FA measures directional constraint of water diffusion, and MD measures the average rate of 

diffusion in any direction.   As white matter (WM) is generally anisotrophic (i.e. the direction of 

water diffusion is highly constrained), lower WM FA and higher WM MD are thought to reflect 

worse white matter tract integrity, at least in regions lacking white matter tract crossings. DTI 

complements other neuroimaging measures, namely measures of white matter hyperintensities 

(WMH) or WM volumes, as DTI-based measures appear to provide an assessment of pathologic 

changes that precede and predict the development of WMH or WM loss,2-4,5-7  and these, in turn, 

appear related to cognition.8-14    
 

We previously demonstrated that hypertension and elevated midlife glucose were associated with 

reduced white matter microstructural integrity, and that this association was independent of the 

degree of white matter hyperintensities (WMH) in the brain.15  Others have demonstrated that it 

is possible to quantify changes in WM microstructural integrity over follow-up periods of two 

years or less.16-19  Thus, DTI-based measures may be useful in clinical trials intervening on 

vascular risk factors as a risk stratification tool, identifying persons at risk of subsequent risk of 

WMH or WM loss, or as a tool used to demonstrate that interventions successfully target 

preservation of WM microstructural integrity.  However, it remains unclear whether DTI 

measures would be useful as a surrogate endpoint in clinical trials.   Given the hypothesized link 

between WM microstructural integrity and WMH or WM loss, and their relationship with 

cognition, DTI-based measures likely provide an early indication of later cognitive decline, 

cognitive impairment, and dementia diagnosis.  While substantial cross-sectional evidence links 

DTI-based measures to cognition, fewer studies have considered associations with cognitive 

change, and strong evidence linking DTI-based measures to the clinical outcomes of MCI or 

dementia is lacking.   

 

Multiple cross-sectional studies suggest a relationship between worse WM microstructural 

integrity assessed using DTI and APOE E4 status, cognition, or dementia.  Compared to non-

carriers, APOE E4 carriers exhibited worse regional WM microstructural integrity in most20-26 

but not all27 studies, and APOE E4 carriers also appear to have decreased interconnectivity of 

structural brain networks quantified from DTI neuroimaging.28 Several studies report that age-

related differences in cognitive performance or processing speed are partially mediated by white 

matter microstructural integrity.29-35   In the Rotterdam Study, lower WM FA and higher WM 

MD were associated with cognitive test performance36 and greater mortality risk of subsequent 

mortality.37  Similar associations between DTI-based measures and performance on tests of 

cognition and reaction time were frequently observed in other samples.38-43 Finally, in cross-

sectional work, persons with a diagnosis of Alzheimer’s disease (AD) or mild cognitive 

impairment (MCI) frequently exhibit worse regional WM microstructural integrity compared to 

cognitively intact controls.20, 41, 44-51 

 

In comparison, relatively few studies have assessed the relationship between WM 

microstructural integrity and subsequent cognitive change or incident dementia, and the results 

are mixed.  In addition, many of these studies are small and may not adequately adjust for 



potential confounders. For example, the RunDMC study considered a sample of older non-

demented adults with cerebral small vessel disease, defined as the presence of lacunes or WMH.  

Reports from this study conclude no association between WM FA or WM MD in normal 

appearing white matter and subsequent cognitive decline after correcting for multiple testing 

using a conservative Bonferroni correction.  However,  prior to correction, worse white matter 

microstructural integrity did appear associated with greater decline on tests of verbal memory 

and fluency at standard cut-offs for statistical significance.52  In related work in the Run DMC 

study, WM microstructural integrity was not associated with incident dementia after considering 

WMH volumes, WM volumes, and hippocampal volumes.53  To the contrary, in the LADIS 

study, MD was associated with accelerated decline in processing speed, executive function, and 

memory; moreover, these associations persisted after adjustment for WMH volumes, lacunes, 

and a measure of brain atrophy.54  Similarly, in the GENIE study, change in white matter 

microstructural integrity was correlated with change in working memory after adjusting for age 

and WMH volumes.19   

 

Thus, the purpose of this study is to quantify the association between late-life measures of WM 

microstructural integrity and cognitive change, incident MCI, and incident dementia in relatively 

large sample of persons with DTI data and prospective cognitive assessment, using data from the 

Atherosclerosis Risk in Communities Study (ARIC).  
 

5. Main Hypothesis/Study Questions: 

Study Aim: 

Assess whether measures of white matter microstructural integrity at Visit 5 are associated with post-Visit 

5 cognitive outcomes, including incident dementia, development of MCI and cognitive decline.  

  

Hypothesis: 

Worse overall white matter microstructural integrity at Visit 5 is associated with higher risk of incident 

dementia, development of MCI, and more cognitive decline.  We will also determine whether regional 

white matter microstructural integrity is preferentially associated with decline in specific domains of 

cognitive function.  

 

We additionally hypothesize that the relationship between white matter microstructural integrity and post-

Visit 5 cognitive outcomes is independent of the severity of WMH, WM volumes, and/or hippocampal or 

AD signature region gray matter volumes at baseline.  

 

 

6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of interest 

with specific reference to the time of their collection, summary of data analysis, and any anticipated 

methodologic limitations or challenges if present). 

 

Study design 

Longitudinal cohort study (Visit 5 to Visit 6) 

 

Exclusion criteria 

In all analyses, we will exclude participants with: 

- No DTI data at Visit 5 

- Prevalent stroke at Visit 5 

- Neither black nor white 



- Non-white from MN or MD sites 

- Disallow use of genetic data or analyses for non-CVD research 

 

In analyses of cognitive decline, we will restrict our analytical sample to those with complete Visit 5 

cognitive data. 

In analyses of incident MCI, we will restrict our sample to Visit 5 attendees deemed cognitively normal at 

Visit 5. 

In analyses of incident dementia, we will restrict our sample to Visit 5 attendees without a diagnosis of 

dementia (Level 1, 2 or 3) at Visit 5. 

 

Cognitive Outcomes 

1) Cognitive decline:  We will quantify cognitive change using global and domain-specific cognitive 

summary scores derived via latent variable methods as described previously.55 

2) Incident MCI:  We will consider persons who have incident MCI at Visit 6 if they were free of MCI 

or dementia at Visit 5 and the adjudicated diagnosis, based on Visit 6 cognitive assessment, is a 

diagnosis of MCI.  We plan to censor persons with dementia at V6; however, depending on the 

number of MCI cases, we may consider a combined “incident MCI/dementia” outcome, which would 

also allow inclusion of those with cognitive impairment on surveillance that does not reach criteria for 

dementia.      

3) Incident dementia:  We will classify persons as having incident dementia between Visit 5 and Visit 6 

if they were dementia-free at Visit 5 and were identified as having dementia according to (a) 

adjudicated diagnosis based on Visit 6 cognitive assessment, (b) dementia surveillance classification 

based on the AD8 and Six Item Screener administered as part of annual follow-up calls, or (c) based 

on a hospital discharge code/death code.   

 

Exposures  

We will consider white matter fractional anisotrophy (WM FA) and white matter mean diffusivity (WM 

MD) for seven regions of interest (ROIs):  frontal, temporal, occipital, and parietal lobes, anterior and 

posterior corpus callosum, and an overall measure created by taking a weighted average of these six ROIs 

(capsular WM is not included), as derived previously15.  Unless there is evidence of significant 

differences by regional ROI, we will focus on the overall measure.   

 

Covariates 

(Note, the timing of assessment for hypertension and diabetes covariates was chosen based on prior work 

showing time-specific associations between vascular risk factors and WM FA or WM MD in ARIC15 and 

known time-specific associations between vascular risk factors and cognition56.  From this we conclude 

that midlife and late-life hypertension, and midlife diabetes may confound the association between DTI at 

Visit 5 and late-life cognitive outcomes.)  

We will adjust for age at Visit 5, gender, race-center, Visit 5 smoking status (current, former, never), 

body mass index (BMI) at Visit 5, apolipoprotein E ε4 genotype, hypertension at Visit 1 and Visit 5, 

diabetes status at Visit 1, prevalent coronary heart disease prior to Visit 5, and depressive symptoms at 

Visit 5. If missing data on covariates is substantial, we will consider imputing missing covariate data.  

 

Statistical Analysis 

Primary Analyses:  

We will use logistic regression to quantify the association between WM FA and WM MD with incident 

MCI or dementia through Visit 6.    We will use linear mixed effects models to quantify the association 

between WM FA and WM MD with cognitive decline between Visit 5 and Visit 6.  All analyses will be 



weighted using the sampling weights derived to correct for the stratified random sampling approach used 

to select ARIC participants into the MRI sub-sample.   Given small sample size, we will consider 

dropping unimportant covariates (non-significant, effect size near null) from our analyses to improve 

power.   

 

Secondary analyses: 

In secondary analyses, we will further adjust all primary analyses for WMH volume, WM volume (WM 

at risk), hippocampal/AD signature region volume, and (to normalize these volume measures) total 

intracranial volume.  

 

Sensitivity Analysis: 

a) Account for cohort attrition.  It is possible that selection bias due to cohort attrition impacts our study 

findings.  Thus, we will implement inverse probability for attrition weighting to address this potential 

issue, extending models previously developed for this purpose.15, 57, 58  We will also consider using 

MICE to impute cognitive test scores at V6 for those who participate in annual follow-up surveillance 

calls but do not complete cognitive testing at V6. 

b) Understand the impact of sampling.  We will also run analyses without sampling weights to 

understand the impact of the stratified sampling approach used to select persons into the MRI 

subsample.  

c) Use of multiple cognitive impairment ascertainment methods.  We will run analyses to investigate 

whether our findings for the association between white matter microstructural integrity and incident 

dementia are influenced by mode of dementia ascertainment between Visit 5 and Visit 6 (Visit 6, 

AFU calls, or hospitalization/death certificate codes).  As people can transition from MCI to normal 

cognition or dementia, we will also consider analyses linking WM FA and WM MD to prevalent MCI 

at Visit 6 in all Visit 5 participants without dementia at Visit 5 (i.e. including persons categorized as 

either cognitively normal or having MCI at Visit 5). 

d) Effect modification.  If sample size allows, we will consider effect modification by APOE E4 status 

and race. 

e) Choice of models.  Visit 5 and Visit 6 are separated by only 4-5 years, and timing of incident 

dementia diagnoses will be largely dictated by timing of data collection.  However, to use what 

timing data we have, we will also consider using Cox Proportional Hazards models or discrete time 

survival models for analyses of incident dementia.   

 

Limitations/Challenges 

The primary limitations of this study are the relatively short follow-up and potentially small numbers of 

cases for analyses of incident MCI and incident dementia.  The short follow-up limits ability to detect 

long-term effects of white matter microstructural integrity on incident cognitive impairment.  The small 

number of cases limits study power, and will likely preclude evaluation of effect modification.  We are 

also limited to one MRI, and so cannot quantify the impact of change in WM microstructural integrity on 

our outcomes.  In addition, we will focus on regional summaries of WM FA and WM MD, rather than 

measures based on tractography or analyses using voxel-wise comparisons.  Similarly, we quantify WM 

FA and WM MD in total white matter, not normal appearing white matter.  While this choice reflects the 

difficulties in segmentation, it differs from the most common approach.  In this context, adjustment for 

WMH will also allow us to address issues related to differences in WM MD or WM FA due to differences 

in WMH burden, in addition to showing independent contributions of these two measures to cognition.59 

Bias is always a potential issue in epidemiologic studies.  However, we will explore issues of residual 



confounding, will address selection bias in our sensitivity analyses, and will anticipate measurement error 

will be non-differential and hence most likely conservative.  
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